Isolation of three hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading species of the family Enterobacteriaceae from nitramine explosive-contaminated soil.
نویسندگان
چکیده
Three species of the family Enterobacteriaceae that biochemically reduced hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) were isolated from nitramine explosive-contaminated soil. Two isolates, identified as Morganella morganii and Providencia rettgeri, completely transformed both RDX and the nitroso-RDX reduction intermediates. The third isolate, identified as Citrobacter freundii, partially transformed RDX and generated high concentrations of nitroso-RDX intermediates. All three isolates produced 14CO2 from labeled RDX under O2-depleted culture conditions. While all three isolates transformed HMX, only M. morganii transformed HMX in the presence of RDX.
منابع مشابه
Type I nitroreductases in soil enterobacteria reduce TNT (2,4,6,-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine).
Many enteric bacteria express a type I oxygen-insensitive nitroreductase, which reduces nitro groups on many different nitroaromatic compounds under aerobic conditions. Enzymatic reduction of nitramines was also documented in enteric bacteria under anaerobic conditions. This study indicates that nitramine reduction in enteric bacteria is carried out by the type I, or oxygen-insensitive nitrored...
متن کاملDetection of the cyclic nitramine explosives hexahydro-1,3,5-trinitro- 1,3,5-triazine (RDX) and octahydro- 1,3,5,7-tetranitro- 1,3,5,7-tetrazine (HMX) and their degradation products in soil environments.
The cyclic nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine (HMX) were examined in field and microcosm soil samples to determine their patterns of degradation and environmental fates. A number of analytical techniques, including solid-phase microextraction with on-fiber derivatization, gas chromatography-mass spectrometry, gas...
متن کاملReductive transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, and methylenedinitramine with elemental iron.
Reductive (pre)treatment with elemental iron is a potentially useful method for degrading nitramine explosives in water and soil. In the present study, we examined the kinetics, products, and mechanisms of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) degradation with elemental iron. Both RDX and HMX were transformed with iron to formal...
متن کاملA TaqMan polymerase chain reaction method for monitoring RDX-degrading bacteria based on the xplA functional gene.
Hexahydro-1,3,5-trinitro-1,3,5,-triazine (RDX) is a cyclic nitramine explosive that is a major component in many military high-explosive formulations. In this study, we developed a real-time TaqMan polymerase chain reaction (PCR) that targets the xplA functional gene involved in the breakdown/transformation of RDX. The xplA gene, described previously [Seth-Smith, H.M., Rosser, S.J., Basran, A.,...
متن کاملCharacterization of metabolites during biodegradation of hexahydro-1, 3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge.
The biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in liquid cultures with municipal anaerobic sludge showed that at least two degradation routes were involved in the disappearance of the cyclic nitramine. In one route, RDX was reduced to give the familiar nitroso derivatives hexahydro-1-nitroso-3,5-dinitro-1,3, 5-triazine (MNX) and hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 60 12 شماره
صفحات -
تاریخ انتشار 1994